Test Planning & Strategy
Test Planning & Strategy
Effective MCP testing requires careful planning and a systematic approach. This guide provides frameworks, strategies, and best practices for comprehensive MCP implementation testing using MCP Client Tester.
Testing Framework Overview
MCP testing should cover multiple dimensions to ensure comprehensive validation:
graph TD A[MCP Testing Strategy] --> B[Protocol Compliance] A --> C[Client Compatibility] A --> D[Performance Validation] A --> E[Error Handling] A --> F[Security Testing]
B --> B1[Message Format] B --> B2[Method Signatures] B --> B3[Transport Behavior]
C --> C1[Client Detection] C --> C2[Feature Support] C --> C3[Version Compatibility]
D --> D1[Response Times] D --> D2[Throughput] D --> D3[Resource Usage]
E --> E1[Invalid Requests] E --> E2[Network Failures] E --> E3[Recovery Scenarios]
F --> F1[Authentication] F --> F2[Authorization] F --> F3[Input Validation]Test Categories
1. Protocol Compliance Testing
Ensure your MCP implementation correctly follows the protocol specification.
Core Protocol Elements:
- JSON-RPC 2.0 message format compliance
- Required method implementations
- Parameter validation and error responses
- Transport-specific behavior
Test Cases:
-
Initialization Sequence
- Verify proper handshake completion
- Check protocol version negotiation
- Validate capability exchange
-
Message Format Validation
- Test JSON-RPC 2.0 compliance
- Verify request/response/notification formats
- Check error response structure
-
Method Implementation
- Test all implemented methods
- Verify parameter handling
- Check response format compliance
-
Transport Behavior
- Test connection establishment
- Verify message delivery
- Check connection cleanup
2. Feature Testing
Validate specific MCP features work correctly across different scenarios.
Tools Testing:
{ "test_suite": "tools", "test_cases": [ { "name": "tool_discovery", "method": "tools/list", "expected_fields": ["name", "description", "inputSchema"] }, { "name": "tool_execution", "method": "tools/call", "test_cases": [ {"args": {"valid": "input"}, "expect": "success"}, {"args": {"invalid": true}, "expect": "error"}, {"args": {}, "expect": "validation_error"} ] } ]}Resources Testing:
- Resource discovery and listing
- Content reading with various formats
- URI handling and validation
- Subscription to resource changes
Prompts Testing:
- Template discovery
- Parameter substitution
- Dynamic prompt generation
- Error handling for invalid templates
3. Client Compatibility Testing
Ensure your MCP server works correctly with different client implementations.
Multi-Client Test Matrix:
| Test Scenario | Claude Desktop | FastMCP | Python SDK | Custom Client |
|---|---|---|---|---|
| Basic Connection | ✓ | ✓ | ✓ | ? |
| Tool Calling | ✓ | ✓ | ✓ | ? |
| Resource Access | ✓ | ✓ | ✓ | ? |
| Error Handling | ✓ | ✓ | ✓ | ? |
| Progress Updates | ✓ | ✓ | ✓ | ? |
Client-Specific Tests:
# Example test configuration for multiple clientsCLIENT_CONFIGS = { "claude-desktop": { "transport": "stdio", "features": ["tools", "resources", "prompts", "progress"], "limitations": ["no_sampling", "no_http_transport"] }, "fastmcp-client": { "transport": "http", "features": ["tools", "resources", "prompts", "sampling", "progress"], "limitations": [] }, "custom-client": { "transport": "http", "features": ["tools", "resources"], "limitations": ["no_prompts", "basic_error_handling"] }}4. Performance Testing
Validate system performance under various load conditions.
Performance Metrics:
- Response time (average, p95, p99)
- Throughput (messages per second)
- Memory usage
- Connection overhead
- Error rates
Load Testing Scenarios:
Baseline Performance
- Single client, sequential requests
- Measure baseline response times
- Establish performance benchmarks
Concurrent Connections
- Multiple simultaneous clients
- Measure resource contention
- Test connection limits
High Throughput
- Rapid request sequences
- Large payload handling
- Queue saturation testing
Stress Testing
- Beyond normal operating limits
- Resource exhaustion scenarios
- Recovery behavior validation
5. Error Handling & Recovery
Test system behavior under various failure conditions.
Error Scenarios:
- Network interruptions
- Invalid message formats
- Unknown method calls
- Parameter validation failures
- Resource unavailability
- Timeout conditions
Recovery Testing:
- Connection re-establishment
- State synchronization
- Graceful degradation
- Error propagation
Test Environment Setup
Development Environment
Local Testing Setup:
services: mcp-client-tester: build: . environment: - ENVIRONMENT=testing - LOG_LEVEL=DEBUG - ENABLE_TEST_TOOLS=true volumes: - ./test-data:/app/test-data
test-clients: build: ./test-clients depends_on: - mcp-client-tester environment: - MCP_SERVER_URL=http://mcp-client-tester:8000Test Data Management:
def setup_test_environment(): """Initialize test environment with sample data"""
# Create test sessions test_sessions = [ {"name": "Protocol Compliance", "transport": "stdio"}, {"name": "Performance Baseline", "transport": "http"}, {"name": "Error Handling", "transport": "sse"} ]
# Setup test tools and resources setup_test_tools() setup_test_resources()
# Configure client simulators setup_client_simulators()Staging Environment
Production-like Testing:
- Multiple server instances
- Load balancer configuration
- Database replication
- Monitoring and logging
- Security controls
Continuous Integration
CI/CD Pipeline Integration:
name: MCP Testing Pipeline
on: [push, pull_request]
jobs: protocol-tests: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3
- name: Start MCP Client Tester run: docker-compose up -d
- name: Run Protocol Compliance Tests run: | python -m pytest tests/protocol/ \ --mcp-server=http://localhost:8000 \ --junit-xml=protocol-results.xml
- name: Run Client Compatibility Tests run: | python -m pytest tests/clients/ \ --junit-xml=client-results.xml
- name: Generate Test Report run: | python scripts/generate_test_report.py \ --results protocol-results.xml client-results.xmlTest Scenarios & Use Cases
Basic Functionality Tests
Essential Test Scenarios:
-
Connection Lifecycle
async def test_connection_lifecycle():# Test connection establishmentsession = await create_test_session("stdio")assert session.status == "active"# Test normal operationtools = await session.list_tools()assert len(tools) > 0# Test graceful shutdownawait session.close()assert session.status == "closed" -
Tool Interaction Flow
async def test_tool_interaction():session = await create_test_session("http")# Discover toolstools = await session.list_tools()search_tool = find_tool(tools, "search_database")# Call tool with valid parametersresult = await session.call_tool("search_database",{"query": "test", "limit": 5})assert result.success# Call tool with invalid parameterswith pytest.raises(ValidationError):await session.call_tool("search_database",{"invalid": "params"})
Advanced Scenarios
Complex Integration Tests:
-
Multi-step Workflows
async def test_multi_step_workflow():session = await create_test_session("http")# Step 1: Search for datasearch_results = await session.call_tool("search_database", {"query": "user:123"})# Step 2: Process resultsuser_data = search_results.content[0].dataprocessed = await session.call_tool("process_data", {"data": user_data})# Step 3: Generate reportreport = await session.call_tool("generate_report", {"data": processed.content})assert report.success -
Progress Tracking
async def test_long_running_operation():session = await create_test_session("sse")# Start long operationoperation_id = await session.call_tool("process_large_dataset",{"dataset": "large_data.csv"})# Monitor progressprogress_updates = []async for update in session.listen_progress(operation_id):progress_updates.append(update)if update.complete:breakassert len(progress_updates) > 0assert progress_updates[-1].complete
Error Scenario Testing
Failure Mode Testing:
async def test_error_scenarios(): session = await create_test_session("http")
# Test invalid method with pytest.raises(MethodNotFoundError): await session.call_method("invalid_method")
# Test malformed parameters with pytest.raises(InvalidParamsError): await session.call_tool("valid_tool", "invalid_params")
# Test resource not found with pytest.raises(ResourceNotFoundError): await session.read_resource("nonexistent://resource")
# Test timeout scenario with pytest.raises(TimeoutError): await session.call_tool( "slow_tool", timeout=1.0 )Test Automation Strategies
Automated Test Suites
Comprehensive Test Coverage:
class MCPTestSuite: """Automated test suite for MCP implementations"""
def __init__(self, server_config): self.server_config = server_config self.results = TestResults()
async def run_all_tests(self): """Execute complete test suite"""
# Protocol compliance tests await self.run_protocol_tests()
# Feature functionality tests await self.run_feature_tests()
# Client compatibility tests await self.run_compatibility_tests()
# Performance tests await self.run_performance_tests()
# Error handling tests await self.run_error_tests()
return self.results
async def run_protocol_tests(self): """Test protocol compliance""" for transport in ["stdio", "http", "sse"]: session = await self.create_session(transport)
# Test initialization await self.test_initialization(session)
# Test message formats await self.test_message_formats(session)
# Test method signatures await self.test_method_signatures(session)Regression Testing
Automated Regression Detection:
class RegressionTestSuite: """Detect regressions in MCP implementations"""
def __init__(self, baseline_results): self.baseline = baseline_results self.current_results = None
def compare_results(self, current_results): """Compare current results against baseline"""
regressions = []
# Performance regression detection if current_results.avg_response_time > self.baseline.avg_response_time * 1.5: regressions.append("Performance regression detected")
# Feature regression detection baseline_features = set(self.baseline.supported_features) current_features = set(current_results.supported_features)
missing_features = baseline_features - current_features if missing_features: regressions.append(f"Missing features: {missing_features}")
return regressionsTest Data Management
Test Data Strategy
Structured Test Data:
# Test data organizationTEST_DATA = { "tools": { "valid_calls": [ {"name": "search", "args": {"query": "test"}}, {"name": "calculate", "args": {"expression": "2+2"}}, ], "invalid_calls": [ {"name": "nonexistent", "args": {}}, {"name": "search", "args": {"invalid": "param"}}, ] }, "resources": { "available": [ "file:///test/data.txt", "http://example.com/api/data", ], "unavailable": [ "file:///nonexistent.txt", "http://invalid.domain/data", ] }}Data Generation
Dynamic Test Data:
def generate_test_scenarios(complexity="medium"): """Generate test scenarios based on complexity level"""
scenarios = []
if complexity == "basic": scenarios = generate_basic_scenarios() elif complexity == "medium": scenarios = generate_medium_scenarios() elif complexity == "advanced": scenarios = generate_advanced_scenarios()
return scenarios
def generate_performance_test_data(size_category): """Generate test data for performance testing"""
data_sizes = { "small": {"records": 100, "size_kb": 10}, "medium": {"records": 10000, "size_kb": 1000}, "large": {"records": 1000000, "size_kb": 100000} }
return create_test_dataset(data_sizes[size_category])Monitoring & Reporting
Test Metrics
Key Performance Indicators:
- Test Coverage: Percentage of protocol features tested
- Success Rate: Ratio of passing tests to total tests
- Performance Benchmarks: Response time percentiles
- Client Compatibility: Support matrix completion
- Error Handling: Recovery success rates
Reporting Framework
Automated Report Generation:
class TestReportGenerator: """Generate comprehensive test reports"""
def generate_executive_summary(self, results): """High-level summary for stakeholders""" return { "overall_score": calculate_overall_score(results), "critical_issues": identify_critical_issues(results), "recommendations": generate_recommendations(results) }
def generate_technical_report(self, results): """Detailed technical analysis""" return { "protocol_compliance": results.protocol_score, "performance_analysis": results.performance_metrics, "client_compatibility": results.compatibility_matrix, "error_analysis": results.error_patterns }Best Practices
Test Design Principles
- Comprehensive Coverage: Test all protocol features and edge cases
- Realistic Scenarios: Use production-like test conditions
- Automated Execution: Minimize manual testing overhead
- Continuous Validation: Integrate with development workflows
- Clear Reporting: Provide actionable insights
Common Pitfalls to Avoid
- Insufficient Error Testing: Don’t only test happy paths
- Single Client Focus: Test with multiple client implementations
- Performance Assumptions: Always measure actual performance
- Static Test Data: Use varied and realistic test scenarios
- Manual Processes: Automate repetitive testing tasks
Ready to implement your testing strategy? Continue with Protocol Validation for specific testing techniques or explore Performance Testing for load testing strategies.